PEDIATRIC PULMONOLOGY – SETEMBRO/2025

PEDRO CAMPOLINA NAHASS – RESIDENTE DE PNEUMOLOGIA PEDIÁTRICA DO HIJPII

ORIGINAL ARTICLE OPEN ACCESS

Postexercise Airway Responses by Spirometry and Oscillometry in Nonathlete and Athlete Adolescents

Karin Ersson^{1,2} D | Kjell Alving³ | Margareta Emtner⁴ | Christer Janson⁴ | Henrik Johansson^{1,2,4} | Andrei Malinovschi¹

¹Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden | ²Department of Women's and Children's Health, Physiotherapy, Uppsala University, Uppsala, Sweden | ³Department of Women's and Children's Health, Paediatrics, Uppsala University, Uppsala, Sweden | ⁴Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden

Estudo transversal

- População composta de subamostras de duas coortes distintas
- Questionário
 - Sintomas respiratórios, asma e alergia
- Seleção para realização do teste foi estratificada com base no autorrelato de dispneia induzida pelo exercício

População do estudo

Atletas

Não Atletas

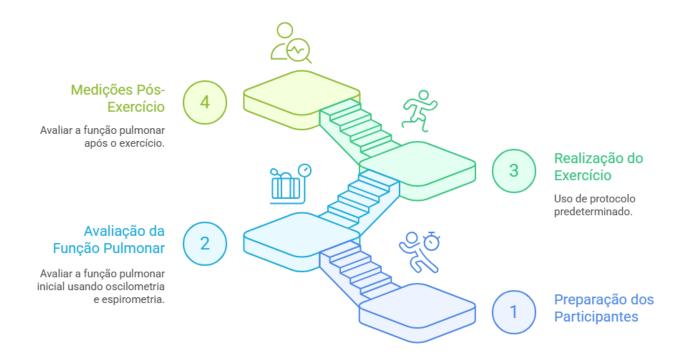
98

143

Idade mediana de 15,8 anos Idade mediana de 14,2 anos

Questionário

- o "Nos últimos 12 meses, em uma ou mais ocasiões, você teve um ataque de falta de ar durante ou após o exercício?"
- o "Em algum momento nos últimos 12 meses, você teve chiado ou chiado no peito?"


Diagnóstico de asma

 Diagnóstico realizado por um médico e presença de sintomas nos últimos 12 meses e/ou realização de tratamento nos últimos 3 meses.

FeNO

Duas aferições - antes da realização dos testes

Teste de Broncoconstrição Induzida por Exercício

Definição de EIB

- Espirometria
 - Um declínio no FEVI de ≤ -10% em relação ao basal em qualquer momento pós-exercício
- Oscilometria
 - Um aumento na R5 (resistência) de ≥ 25% em relação ao basal

TABLE 1 | Baseline characteristics of the participants.

	Nonathletes $(n = 143)$	Athletes $(n = 98)$
Female, n (%)	86 (62.1)	57 (58.2)
Age (years), median (Q1-Q3)	14 (14-15)	16 (15-16)
Height (cm), median (Q1-Q3)	168 (163-175)	172 (167-180)
BMI to age, a n (%)		
Overweight > + 1 SD	29 (20.2)	24 (24.5)
Normal -2SD to +1SD	108 (75.5)	73 (74.5)
Thinness < -2SD	6 (4.2)	1(1)
Rhinitis, n (%)	48 (33.6)	26 (27.6)
Current asthma, b n (%)	43 (30.1)	21 (21.4)
Wheeze, c n (%)	56 (39.2)	34 (34.7)
Exercise-induced dyspnea, c n (%)	97 (67.8)	41 (41.8)
ICS, d n (%)	23 (16.1)	11 (11.8)
FeNO (ppb), geometric mean (95% CI)	14.5 (13.0, 16.2)	16.2 (14.7, 17.9)
Elevated FeNO (≥25 ppb), n (%)	26 (18.2)	20 (20.4)
FEV ₁ % predicted, e mean (SD)	92.5 (±10.2)	95.8 (±10)
Abnormal FEV ₁ /FVC ratio, f n (%)	10 (6.9)	3 (3)
R ₅ (cmH ₂ 0*s/L), mean (SD)	3.83 (±0.76)	2.92 (± 0.72)
Abnormal R ₅ , ^g n (%)	20 (14)	2 (2)
X ₅ (cmH ₂ 0*s/L), mean (SD)	$-1.09 (\pm 0.44)$	$-0.69 (\pm 0.25)$
Abnormal X ₅ ^h	10 (6.9)	2(2)

Note: Available data: All 143 participants responded to all the questions except athletes regarding ICS (N = 93).

Abbreviations: 95% CI, 95% confidence interval; BMI, body mass index; ICS, inhaled corticosteroid; FeNO, fractional exhaled nitric oxide; FEV₁, forced expiratory volume in one second; ppb, parts per billion; Q1, first quartile; Q3, third quartile; R₅, respiratory resistance at 5 Hz; SD, standard deviation; X₅, respiratory reactance at 5 Hz.

^{*}Cutoffs according to World Health Organization.

^bSelf-reported physician-diagnosed with symptoms and/or medication.

^c Self-reported symptom in the preceding 12 months.

d Any use in the preceding 3 months.

^e Reference value: Global Lung Initiative.

f < Lower limit of normal according to Global Lung Initiative.

^{8&}gt;Upper limit of normal according to the reference equation by Ducharme.

h < Lower limit of normal according to the reference equation by Ducharme.

 A sobreposição modesta entre ΔFEVI e ΔR5 para o diagnóstico de EIB sugere que as duas medições podem detectar estreitamento das vias aéreas em locais diferentes

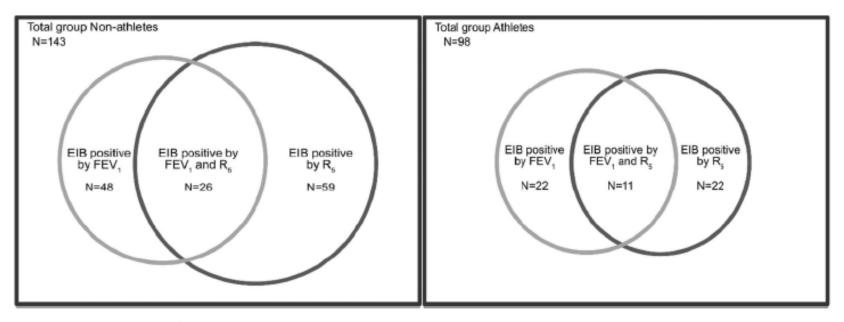


FIGURE 1 | Proportion of participants EIB positive by FEV_1 , R_5 or both methods presented per group. EIB, exercise-induced bronchoconstriction; FEV_1 , forced expiratory volume in 1s; R_5 , respiratory resistance at 5 Hz.

Não atletas

- ΔFEVI: Correlação fraca negativa (r = -0.17, p = 0.04).
- ΔR5: Correlação fraca positiva (r=0.35, p<0.001).
- Δ **X5:** Correlação fraca negativa (r= 0.25, p= 0.005).

Atletas

Nenhuma correlação

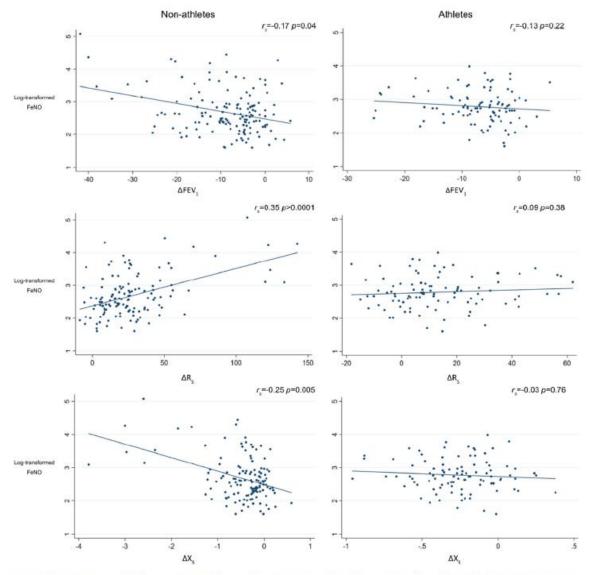


FIGURE 2 | Rank correlation (Spearman's rho, r_s) between FeNO and postexercise airway response, measured by FEV₁, R₅ and X₅ presented per group. Nonathletes in the left column and athletes in the right column. ΔFEV1 was defined as percent change from baseline to nadir postexercise. ΔR5 was defined as percent change from baseline to peak postexercise. ΔX5 was defined as change in absolute values from baseline to nadir postexercise. 95% CI, 95% confidence interval; FeNO, fractional exhaled nitric oxide; FEV₁, forced expiratory volume in 1 s; R₅, respiratory resistance at 5 Hz; X₅, respiratory reactance at 5 Hz. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 | Association between elevated FeNO (≥25 ppb) and being EIB positive measured by ΔFEV₁ and ΔR₅ respectively. Reported as adjusted odd ratios and 95% confidence intervals, for all participants and stratified by group. The logistic regression models used were adjusted for height and sex.

	Nonathletes	Athletes
EIB positive by FEV1, aOR (95%CI)	2.54 (1.05-6.12)	1.35 (95% CI: 0.41-4.44)
EIB positive by R ₅ , aOR (95%CI)	3.05 (1.18-7.9)	2.06 (95% CI: 0.66-6.61)

Note: Bold values indicate statistically significant.

Abbreviations: FeNO, fractional exhaled nitric oxide; FEV1, forced expiratory volume in 1 s; PPB, part per billion; Rs, resistance at 5 Hz.

FeNO elevado foi um preditor significativo de EIB apenas em não atletas

TABLE 3 | Associations between self-reported symptoms and postexercise airway response measured by Δ FEV₁, Δ R₅, and Δ X₅ respectively. Reported as β-coefficients and 95% confidence intervals, presented by group.

		Nonathletes			Athletes	
	ΔFEV_1	ΔR_5	ΔX_5	ΔFEV_1	ΔR_5	ΔX_5
Wheeze	-4.00	13.92	-0.38	0.46	-0.36	-0.03
	(-6.91, -1.09)	(4.50, 23.34)	(-0.61, -0.15)	(-2.20, 3.13)	(-7.85, 7.13)	(-0.13, 0.08)
EID	-4.65	7.68	-0.21	0.35	1.69	-0.03
	(-7.65, -1.64)	(-2.50, 17.86)	(-0.46, 0.03)	(-2.18, 2.88)	(-5.53, 8.90)	(-0.13, 0.07)

Note: ΔFEV_1 was defined as percent change from baseline to nadir postexercise. ΔR_5 was defined as percent change from baseline to peak postexercise. ΔX_5 was defined as change in absolute values from baseline to nadir postexercise. Bold values indicate statistically significant.

Abbreviations: EID, exercise-induced dyspnea; FEV, forced expiratory volume in 1 s; Rs, resistance at 5 Hz; Xs, reactance at 5 Hz.

 Sibilância pode estar ligada a uma resposta pós-exercício mais pronunciada nas vias aéreas periféricas, detectada pela oscilometria.

CONCLUSÃO

- Adolescente não atleta
 - o FeNO elevado e sintomas autorrelatados podem indicar quem deve realizar o teste de BIE
 - FeNO elevado foi associado a maior probabilidade de BIE
- Adolescente atleta
 - Informações limitadas
 - Nenhuma associação foi significativa
- Oscilometria como ferramenta complementar para espirometria

ORIGINAL ARTICLE OPEN ACCESS

Detecting Impaired Lung Growth Using the Conditional Change Score of FEV_1 in an Open Cohort of Children With Asthma

Bruno Mahut¹ | Plamen Bokov² | Nicole Beydon³ (D) | Christophe Delclaux² (D)

¹Clinique La Berma, Antony, France | ²AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique-Centre du Sommeil, INSERM NeuroDiderot, Université de Paris, Paris, France | ³AP-HP, Hôpital Armand Trousseau, Service de Physiologie Pédiatrique-Centre du Sommeil, Paris, France

- Estudo realizado com base na coorte aberta La Berma
 - Acompanhamento ambulatorial de crianças asmáticas desde 2009
 - Reanalise de 295 crianças com asma confirmada
 - Pelo menos 10 espirometrias realizadas após 8 anos de idade
 - Duração mediana do acompanhamento foi de 6,5 anos

- Medidas de função pulmonar
 - o Taxa de mudança anualizada de variação para o VEFI pré-BD
 - o Pontuação de mudança condicional
 - > Primeira e última visita
 - > Valores de referência espirometria utilizados foram os do GLI-2012
 - Classificação de acordo com a mudança condicional
 - < -1,96: Crescimento reduzido</p>
 - > 1,96: Crescimento aumentado

TABLE 1 | Characteristics (number or median [25th; 75th percentile]) of the 295 children with asthma according to the three groups of scores of conditional change of FEV1.

Characteristics N (% population, [95% CI])	CC score > +1.966 (2%, [1-4]) Enhanced growth Group 1	-1.96 ≤ CC score ≥ +1.96243 (82%, [78-87]) Normal lung growth Group 2	CC score < -1.9646 (16%, [12-20]) Reduced growth Group 3	p value ^d	Intergroup comparisons
Sex, male (%)	5 (83)	165 (68)	29 (63)	0.572	
Age at first symptoms, years	0 [0; 3]	1 [0; 3]	0 [0; 4]	0.853	
Atopy status				0.891	
Negative skin prick tests, n	0	25	4		
One positive prick test, n	1	51	11		
More than one positive prick test, n	5	167	31		
Parental atopy, n	4	115	28	0.099	
Parental asthma, n	2	99	17	0.842	
Longitudinal PFT characteristics					
Duration of follow-up, years	5.9 [5.4; 6.3]	6.5 [5.7; 7.3]	6.6 [5.9; 7.3]	0.352	
ED Hospitalization frequency ^a	0.000 [0.000; 0.036]	0.071 [0.000; 0.216]	0.000 [0.000; 0.119]	0.205	
Number of spirometric sessions	11 [10; 12]	12 [11; 14]	13 [11; 15]	0.082	
Best sRaw reversibility in the past	53 [52; 64]	54 [46; 62]	55 [49; 62]	0.665	
Best FEV_1 reversibility in the past	14 [10; 26]	20 [15; 29]	25 [19; 36]	0.028	1,2 < 3
FEV ₁ slope, % per year	+3.30 [+1.39; +4.15]	-0.78 [-1.91; 0.28]	-2.94 [-3.88; -2.18]	< 0.001	1>2>3
SD of FEV ₁ slope	1.30 [1.06; 1.51]	1.01 [0.75; 1.38]	0.96 [0.80; 1.42]	0.192	
Spirometry at inclusion					
Age, years	9.0 [8.1; 9.5]	8.5 [8.2; 9.3]	8.4 [8.2; 9.1]	0.262	
FEV ₁ , z-score	-1.58 [-2.29; -1.33]	-0.55 [-1.38; 0.18]	0.05 [-0.85; 0.77]	< 0.001	1 < 2 < 3
FVC, z-score	-0.73 [-1.83; -0.30]	0.26 [-0.38; 1.06]	0.52 [-0.11; 1.23]	0.008	1 < 2,3
FEV ₁ /FVC, z-score	-1.40 [-1.78; -1.10]	-1.27 [-2.03; -0.45]	-0.99 [-1.64; -0.27]	0.252	
Obstructive defect, n (%)	3 (50)	99 (41)	11 (24)	0.083	
Spirometry at last follow-up					
FEV ₁ , z-score	1.11 [0.47; 1.26]	-0.77 [-1.36; -0.08]	-2.14 [-2.66; -1.58]	< 0.001	1>2>3
FVC, z-score	1.19 [0.00; 1.78]	-0.07 [-0.58; 0.76]	-0.79 [-1.31; -0.19]	< 0.001	1,2 > 3

TABLE 1 | (Continued)

Characteristics N (% population, [95% CI])	CC score > +1.966 (2%, [1-4]) Enhanced growth Group 1	-1.96 ≤ CC score ≥ +1.96243 (82%, [78-87]) Normal lung growth Group 2	CC score < -1.9646 (16%, [12-20]) Reduced growth Group 3	p value ^d	Intergroup comparisons ^e
FEV ₁ /FVC, z-score	-0.88 [-0.94; -0.28]	-1.25 [-1.93; -0.49]	-2.13 [-2.99; -1.64]	< 0.001	1,2 > 3
Obstructive defect ^b , n (%)	0 (0)	85 (35)	34 (74)	< 0.001	1,2 < 3
Decreased FEV ₁ (z-score < -1.645), n (%)	1 (17)	36 (15)	34 (74)	< 0.001	1,2 < 3
Clinical characteristics at last follo	ow-up				
Age, years	14.8 [14.3; 15.4]	15.4 [14.8; 16.0]	15.4 [14.8; 16.0]	0.262	
BMI, kg.m ⁻²	19.1 [18.1; 21.6]	20.1 [18.5; 22.0]	19.1 [18.2; 20.7]	0.088	
SABA on demand, n	3	102	15	0.443	
ICS only, n	0	10	0	0.330	
ICS dose, BED μg/day ^c	400 [175; 400]	400 [200; 400]	400 [200; 400]	0.510	
ICS-LABA, n	3	131	31	0.230	
Partially or uncontrolled last 3 months, n (%)	0 (0)	106 (44)	17 (37)	0.079	
Days, symptoms within last 3 months	0 [0; 0]	1 [0; 7]	0 [0; 5]	0.069	
Severe exacerbation within last 3 months, n	0	22	3	0.642	

-

CONCLUSÃO

- Crianças com asma podem apresentar crescimento pulmonar deficiente
- Implementação da classificação condicional
 - Permite a identificação precoce de crianças sob maior risco de perda de função pulmonar
- Crianças com z-score inicial de função pulmonar normal podem evoluir com limitação do fluxo aéreo no futuro

ORIGINAL ARTICLE OPEN ACCESS

Respiratory Muscle Strength in Healthy Children Aged 6 Years and Under: An Observational Study

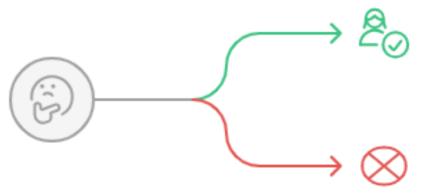
Kayley Noxell¹ | Emily Acquaye² | Vicky MacBean²

¹Therapeutic Services Ltd Physiotherapy, St John's, St. John's, Newfoundland, Canada | ²Department of Health Sciences, Brunel University of London, Uxbridge, UK

Metodologia do estudo

Tipo de estudo

Estudo transversal e observacional.


Localização

Brunel University of London.

Período

Outubro de 2019 a Setembro de 2022. Recrutamento

Critérios de elegibilidade

Elegível

A criança nasceu a termo e tem 6 anos ou menos sem comorbidades ou anormalidades significativas.

Não Elegível

A criança não nasceu a termo, tem mais de 6 anos ou tem comorbidades ou anormalidades significativas.

- Avaliação antropométrica
 - Peso
 - Altura
 - o IMC
- Avaliação da força muscular respiratória
 - Medição por um sistema específico
 - o Realizado por no mínimo 8 ciclos respiratórios ou até que a criança ficasse angustiada
 - Crianças mais novas esforço induzido por choro
 - Crianças mais velhas esforço induzido por meio de incentivo verbal
 - Plmax e PEmax foram determinadas a partir do pico de pressão (positiva ou negativa), a partir do maior de três manobras que estivessem dentro de 20% uma da outra
 - Todas crianças foram convidadas para repetir o teste

Dados de Plmáx e PEmáx em Crianças

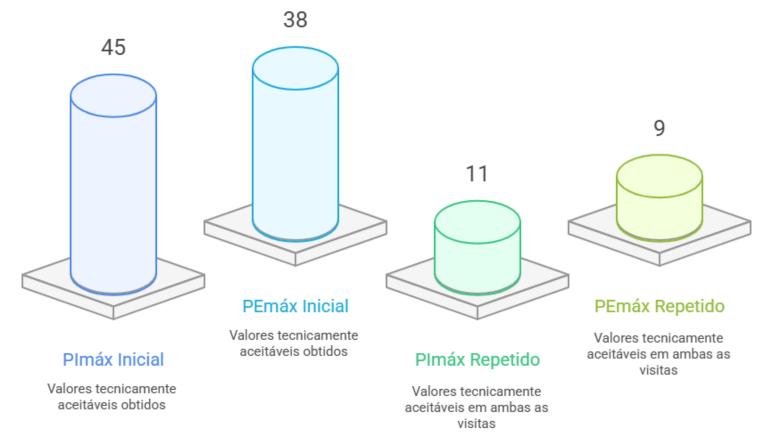


TABLE 1 Participant characteristics.

	All participants $(n = 69)$	PImax successful on visit one $(n = 45)$	PEmax successful on visit one $(n = 38)$	Children providing repeat visit PImax $(n = 11)$	Children providing repeat visit PEmax $(n = 9)$
Age (years)	3.54 (1.82-5.07)	3.32 (1.43-5.45)	4.39 (1.74-5.54)	3.92 (0.97-5.82)	5.15 (4.32-5.70)
Sex (M:F)	43:26	31:14	29:9	7:4	8:1
Height (cm)	95.5 (81.5-113.5)	95.0 (78.8-115.0)	106.2 (83.0-115.0)	101.5 (69.0-121.5)	116.0 (107.5-120.8)
Weight (kg)	15.0 (4.87)	14.0 (10.0-20.0)	17.3 (11.0-20.0)	20.0 (7.5–20.0)	20.0 (17.0-20.0)
BMI (kg/m ²)	15.2 (14.2-16.1)	15.3 (14.6-16.4)	15.0 (14.1-16.1)	15.1 (14.7-18.1)	14.9 (13.7-15.7)
Height-for-age z-score	0.01 (0.92)	0.90 (-0.92 to 1.09)	0.19 (-0.92 to 1.12)	0.29 (-0.92 to 0.88)	1.12 (-0.01 to 1.94)
Weight-for-age z-score	-0.07 (0.92)	-0.04 (-0.73 to 0.68)	-0.02 (-0.54 to 0.71)	0.00 (-0.73 to 0.91)	0.28 (0.05-0.90)
BMI-for-age z-score	-0.14 (1.30)	-0.14 (-0.98 to 0.59)	-0.26 (-0.97 to 0.40)	-0.21 (-1.47 to 1.35)	-0.33 (-1.27 to 0.35)

Note: Data are presented as mean (SD), median (IQR) or counts.

Abbreviations: BMI, body mass index; cm, centimetres; F, female; kg, kilograms; M, male; PEmax, maximum expiratory pressure; PImax, maximum inspiratory pressure.

- Plmax apresentou correlação negativa e significativa com a idade
 - Plmax diminui ligeiramente com o aumento da idade
- PEmax não se correlacionou significativamente com os dados avaliados
- Não houve diferença significativa entre as medições realizadas em duas ocasiões

$$PImax(cmH_2O) = 120.8 + (-3.89 * age in years)$$

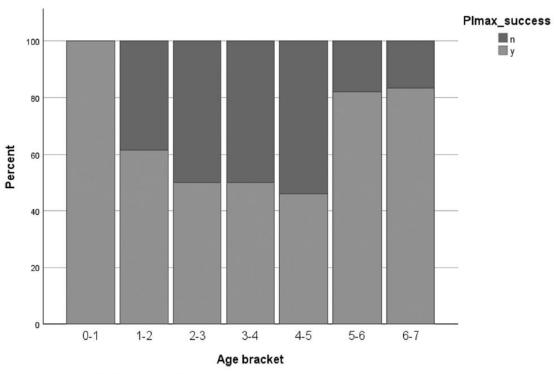


FIGURE 1 | Percentage success rates of PImax across age groupings.

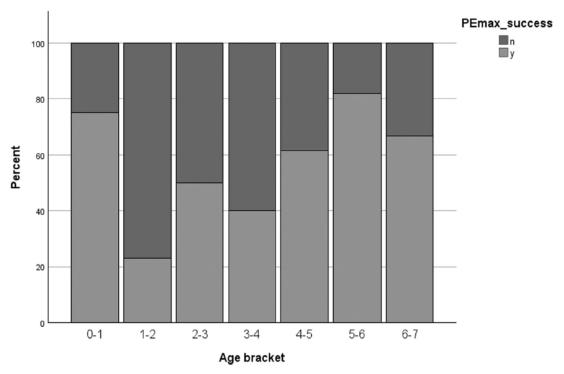


FIGURE 2 | Percentage success rates of PEmax across age groupings.

CONCLUSÃO

- O estudo fornece o primeiro intervalo de referência contínuo desde a primeira infância até a idade escolar precoce
- Correlação negativa e significativa entre Plmax e a idade
 - Relacionada a metodologia do teste
- Limitações
 - Baixa taxa de repetibilidade
 - Taxas de sucesso baixas

ORIGINAL ARTICLE OPEN ACCESS

Estimating the Effects of Continuous Albuterol Dosage on Clinical Outcomes for Pediatric Critical Asthma Exacerbation: A Retrospective Cohort Study

Daniel P. Riggins^{1,2} D | Eneida A. Mendonca^{3,4} | Lucas Bulgarelli³ | Patricia Tachinardi³ | Wanzhu Tu^{5,6} | Colin Rogerson^{1,7} D

¹Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, Indiana, USA | ²Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA | ³Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA | ⁴Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA | ⁵Department of Biostatistics & Health Data Sciences, School of Medicine, Indiana University, Indianapolis, Indiana, USA | ⁶Indiana University Center for Aging Research, Regenstrief Institute, Indianapolis, Indiana, USA | ⁷Department of Pediatrics, Indiana University School of Medicine, Indiana, USA

- Coorte retrospectiva
- Riley Hospital for Children (Indianápolis)
- Pacientes pediátricos (2 a 18 anos) internados por exacerbação asmática grave
 - Uso de albuterol contínuo e corticoide sistêmico dentro das primeiras 24h da admissão
- Janeiro de 2014 Dezembro de 2022

- Comparação entre duas dosagens iniciais de albuterol contínuo
 - I 0mg/h x I 5mg/h (dose padrão)
 - Primeira dose registrada
- Técnica de ajuste de viés
 - o Ponderação estabilizada de probabilidade inversa baseada no escore de propensão
 - Equilibrar as características de base entre os grupos
- Desfechos
 - Primário: Mudança percentual no PASS em 24h
 - Secundário: Duração da terapia, tempo de UTIP, tempo total de internação

TABLE 1 | Baseline demographic and clinical characteristics.

	us albuterol dose			
Characteristic	Overall, $N = 1486$	10 mg/h, N = 575	15 mg/h, $N = 911$	p value ¹
Demographics				
Age (yrs), Median (IQR)	7 (4–10)	4 (3-7)	8 (6-12)	< 0.001
Sex, n (%)				0.37
Female	608 (41)	227 (39)	381 (42)	
Male	878 (59)	348 (61)	530 (58)	
Race, n (%)				< 0.001
Asian	18 (1.2)	11 (1.9)	7 (0.8)	
Black or African American	831 (57)	290 (51)	541 (61)	
White	603 (41)	263 (46)	340 (38)	
Other	3 (0.2)	2 (0.4)	1 (0.1)	
Missing	31	9	22	
Ethnicity, n (%)				0.086
Hispanic or latino	191 (13)	85 (15)	106 (12)	
Not Hispanic or latino	1,276 (87)	485 (85)	791 (88)	
Missing	19	5	14	
Clinical factors				
Bronchopulmonary dysplasia, n (%)	36 (2.4)	22 (3.8)	14 (1.5)	0.005
Comorbid pneumonia, n (%)	310 (21)	137 (24)	173 (19)	0.025
Other Chronic Obstructive Lung Disease, $n\left(\%\right)$	4 (0.3)	2 (0.3)	2 (0.3)	0.64
Initial vital signs				
Temperature, Median (IQR)	37.0 (36.7-37.3)	37.0 (36.7-37.2)	37.0 (36.7-37.3)	0.34
Heart Rate, Median (IQR)	145 (131-158)	148 (134-162)	144 (129-156)	< 0.001
Respiratory Rate, Median (IQR)	32 (26-40)	36 (28-42)	31 (26-39)	< 0.001
Oxygen Saturation, Median (IQR)	96 (94-98)	96 (94-98)	96 (94-98)	0.074
Pediatric Asthma Severity Score, Median (IQR)	9 (7-10)	9 (7-10)	9 (7-10)	0.66
Missing	435	130	305	
Systolic Blood Pressure, Median (IQR)	111 (103-121)	110 (102-118)	113 (103-122)	< 0.001
Diastolic Blood Pressure, Median (IQR)	59 (50-70)	62 (53-71)	58 (49-69)	< 0.001

¹Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test.

TABLE 2 | Unadjusted treatments and outcomes.

		Initial continuo	us albuterol dose	
Characteristic	Overall, $N = 1486$	10 mg/h, N = 575	15 mg/h, N = 911	p value ¹
Treatments				
Initial oxygen support, n (%)				0.18
BiPAP	18 (1.2)	4 (0.7)	14 (1.5)	
HFNC	140 (9.4)	63 (11)	77 (8.5)	
IMV	33 (2.2)	11 (1.9)	22 (2.4)	
RA/NC	1,295 (87)	497 (86)	798 (88)	
Duration of respiratory support, median (IQR)	24 (10-40)	18 (10-36)	24 (10-46)	0.03
Initial fraction of inspired oxygen, median (IQR)	0.35 (0.21-0.50)	0.36 (0.21-0.60)	0.30 (0.21-0.50)	0.002
Missing	48	20	28	
Weight-based albuterol dose (mg/kg/h)	0.49 (0.33-0.67)	0.54 (0.42-0.65)	0.47 (0.30-0.70)	0.01
Total continuous albuterol dose (mg)	215 (94-404)	134 (59-272)	284 (141-469)	< 0.001
Ipratropium ever given, n (%)	1202 (81)	460 (80)	742 (81)	0.49
Magnesium ever given, n (%)	1239 (83)	465 (81)	774 (85)	0.039
Magnesium bolus doses, median (IQR)	1.0 (1.0-2.0)	1.0 (1.0-1.0)	1.0 (1.0-2.0)	< 0.001
Epinephrine ever given, n (%)	49 (3.3)	5 (0.9)	44 (4.8)	< 0.001
Outcomes				
PASS (% change at 24 h), median (IQR)	-17 (-31-0)	-19 (-33-0)	-17 (-30-0)	0.11
Missing	438	131	307	
Length of continuous albuterol therapy (hrs), median (IQR)	16 (7-29)	13 (6-24)	19 (9-31)	< 0.001
Length of PICU stay (days), median (IQR)	1.5 (1.0-2.2)	1.4 (1.0-2.2)	1.5 (1.0-2.2)	0.30
Missing	245	88	157	
Intubation, N (%)	67 (4.5)	23 (4.7)	44 (4.5)	0.98
Length of hospital admission (days), median (IQR)	2.8 (2.1-3.9)	2.7 (2.0-3.9)	2.8 (2.2-4.0)	0.046

¹Pearson's Chi-squared test; Wilcoxon rank sum test.

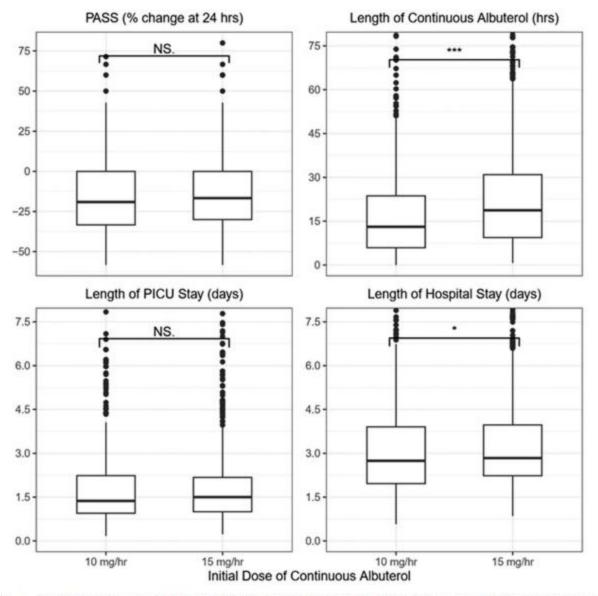


FIGURE 1 | Boxplots comparing percent change in PASS at 24 h, length of continuous albuterol in hours, length of PICU stay in days, and length of hospital stay in days between the 10 mg/h continuous albuterol group on the left, and the 15 mg/h group on the right.

TABLE 3 | Treatment effect of 15 mg/h initial dose (vs. 10 mg/h).

Treatment effect of 15 mg/hr initial dose (vs. 10 mg/hr)						
Outcome	Effect	Confidence interval	p value	Effect type	Model type	
PASS (% change at 24 h)	1.69	-0.93-4.31	0.207	Additive	Simple linear	
Length of continuous albuterol	1.29	1.14-1.45	< 0.001	Multiplicative	Negative binomial	
Length of PICU stay	1.00	0.91-1.11	0.987	Multiplicative	Negative binomial	
Length of hospital stay	0.97	0.9-1.04	0.373	Multiplicative	Negative binomial	

TABLE 4a | Weight-based Albuterol dosing and Treatment Effect of 15 mg/hr Initial Dose (vs. 10 mg/hr) in children age 7-18 years.

Characteristic	Overall, $N = 740$	10 mg/h, N = 147	15 mg/h, $N = 593$	p value
Weight-based albuterol dose (mg/kg/hr)	0.34 (0.18-0.64)	0.20 (0.09-0.37)	0.31 (0.17-0.54)	< 0.001
Treatment effect				
Outcome	Effect	Confidence interval		p value
PASS (% change at 24 h)	-1.54	-2.27-5.34		0.428
Length of continuous albuterol	1.53	1.29-1.81		< 0.001
Length of PICU stay	1.09	0.94-1.26		0.25
Length of hospital Stay	0.99	0.89-1.10		0.85

TABLE 4b | Weight-based Albuterol dosing and Treatment Effect of 15 mg/h Initial Dose (vs. 10 mg/h) in children age 2-6 years.

Characteristic	Overall, $N = 715$	10 mg/h, N = 419 15 mg/h, N = 296		p value
Weight-based albuterol dose (mg/kg/hr)	0.42 (0.21-0.78)	0.35 (0.17–0.69) 0.50 (0.30–0.87)		< 0.001
Treatment effect				
Outcome	Effect	Confidence interval		p value
PASS (% change at 24 h)	1.32	-2.36-5.01		0.48
Length of continuous albuterol	1.02	0.87-1.21		0.80
Length of PICU stay	0.90	0.79-1.04		0.15
Length of hospital stay	0.92	0.83-1.02		0.12

CONCLUSÃO

- Equivalência de eficácia clínica
- Otimização de recursos e duração da terapia
- Implicações para a segurança do paciente
- Limitações
 - Único centro
 - Estudo observacional retrospectivo
 - Dados faltantes no desfecho primário
 - Terapias não incluídas
 - Não investigação dos efeitos colaterais

REVIEW OPEN ACCESS

Pediatric Sleep-Disordered Breathing Year in Review 2024

Vincent Lavoie¹ D | Jean-Paul Praud² D

¹Department of Pediatrics, Pediatric Respiratory Medicine, Montreal Children's Hospital, McGill University, Montreal, Québec, Canada | ²Department of Pediatrics, Division of Pediatric Pulmonology, CHUS-Fleurimont, Sherbrooke, Québec, Canada

DIAGNÓSTICO E TRIAGEM DE DISTÚRBIOS RESPIRATÓRIO DO SONO

- Polissonografia padrão ouro
 - Dificuldade de acesso
- Alternativas em ascensão
 - Oximetria noturna e teste de apneia do sono domiciliar
- Importância clínica

DIAGNÓSTICO E TRIAGEM DE DISTÚRBIOS RESPIRATÓRIO DO SONO

- Métrica de oximetria
 - Indicies de dessaturação de oxigênio de 3% e 4% demonstraram maior precisão diagnóstica
- Impacto na agilidade do tratamento
 - Utilização da oximetria domiciliar reduziu no atraso do tratamento
- Precisão do teste de apneia do sono domiciliar
 - Nível III registro de pelo menos 4 canais
 - Maior acurácia diagnóstica para AOS moderada a grave
- Monitoramento do CO2
 - Um estudo evidenciou que a hipoventilação alveolar obstrutiva é rara em crianças hígidas
 - o Fortalecimento do potencial do papel do teste de apneia do sono domiciliar

FISIOPATOLOGIA

- Relação entre parâmetros nutricionais e AOS
 - Menores de 2 anos apresentaram IMC mais baixo
 - Consequência da AOS
 - Crianças mais velhas apresentaram IMC elevado
 - Fator contribuinte para desenvolvimento de AOS
- Infecção respiratória precoce e AOS
 - Risco de desenvolver AOS foi maior em crianças de apresentaram infecções graves do trato inferior com necessidade de hospitalização

Opções de tratamento para AOS

Adenotonsilectomia

Desafio de indicação e riscos pós-operatórios.

Suporte ventilatório, perda de peso e tratamento ortodôntico.

AOS persistente

Tratamento farmacológico

Corticoide nasal e terapia combinada.

CPAP, BIPAP e CNAF.

Suporte ventilatório

Estimulação do nervo hipoglosso

Estimulação do nervo hipoglosso.

REVIEW OPEN ACCESS

Pediatric Pulmonology Year in Review 2024: Physiology

Heather Boas^{1,2} | Lucy Tan^{1,2} D | Clement L. Ren^{1,2} D

¹Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA | ²Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA

TESTE DE WASHOUT DE RESPIRAÇÃO MÚLTIPLA

Conceito

- Avalia a capacidade residual funcional e a inomogeneidade da ventilação
- Índice de depuração pulmonar
 - Medida mais comum de inomogeneidade da ventilação
 - Número de renovações do volume de gás nos pulmões necessário para lavar o gás até 2,5% da concentração original
 - LCI mais alto Aumento da inomogeneidade

TESTE DE WASHOUT DE RESPIRAÇÃO MÚLTIPLA

Desafios

- Variações de equipamentos e software
- Intercambialidade de dados
- Valores de referência
 - Global Lung Function Initiative compilou dados globais (idades de 2 a 81 anos)

TESTE DE WASHOUT DE RESPIRAÇÃO MÚLTIPLA

- Aplicação clínica
 - BVA por rinovírus
 - Maior inomogeneidade da ventilação nas vias aéreas condutoras periféricas
 - Fibrose cística
 - Melhora no índice de depuração pulmonar após início da terapia tripla
 - Exposição pré-natal ao fumo
 - Lactente expostos apresentaram piores resultados

OSCILOMETRIA

- Avalia a impedância do sistema respiratório
 - Resistência
 - Reflete as forças associadas às perdas por atrito
 - Reatância
 - Reflete as forças inertes e as propriedades viscoelásticas do pulmão

OSCILOMETRIA

- Vantagens metodológicas
 - Facilidade em crianças
 - Não reque uma manobra expiratória forçada máxima
 - Taxa de sucesso
 - Maioria dos estudos demonstraram taxa de sucesso maior na obtenção de dados comparado com a espirometria
 - Pequenas vias aéreas
 - Compreensão intuitiva

OSCILOMETRIA

- Aplicação clínica
 - Avaliação da resposta a broncodilatador em pré-escolar
 - o Monitoramento domiciliar na displasia broncopulmonar
 - Viável tecnicamente
 - Necessário investigações adicionais

TESTE DE FUNÇÃO PULMONAR INFANTIL

Técnicas

Compressão Tóraco-abdominal

Replica a espirometria adulta em lactentes, adequada para avaliar a função pulmonar.

Mecânica Expiratória Passiva

Utiliza a técnica de oclusão de respiração única, útil para avaliar a resistência das vias aéreas.

Medições de Respiração Corrente

Fornece dados sobre padrões de respiração normais, ideal para monitoramento contínuo.

TESTE DE FUNÇÃO PULMONAR INFANTIL

- Funções pulmonares em condições específicas
 - Discinesia ciliar primária
 - Detecção de anormalidades na função pulmonar no lactente
 - Função diafragmática e resistência em prematuros
 - Prematuridade está associado à função diafragmática prejudicada, que piora após aplicação de uma resistência respiratória

ESPIROMETRIA

- Equações de referência neutra em raça
 - American Thoracic Society recomendou em 2023 o fim do uso de equações de referência específicas por raça
 - Adoção da GLI Global
 - Forno, et al
 - Crianças negras apresentaram maior probabilidade de ter redução nos escores de FEVI e FVC e aumento nos escores de FEVI/FVC
 - Crianças brancas apresentaram maior probabilidade de ter aumento nos escores de FEVI e FVC e diminuição nos escores de FEVI/FVC
 - Crianças negras eram mais propensas a mudar o padrão espirométrico de normal para restritivo
 - Rosenfeld, et al.
 - Comparação dos valores de FEVI previstos em paciente com fibrose cística
 - Aumento geral no FEVI pp em pacientes brancos e diminuição nos pacientes negros e de outras raças
 - Potencial de afetar a elegibilidade para transplante pulmonar e ensaios clínicos

ESPIROMETRIA

- Espirometria domiciliar
 - Estudos em pacientes com fibrose cística
 - Resultados clínicos comparáveis ao cuidado presencial
 - Uso para monitorar tendências da função pulmonar antes e após uma exacerbação
 - Monitoramento da asma
 - Utilidade limitada

OBRIGADO