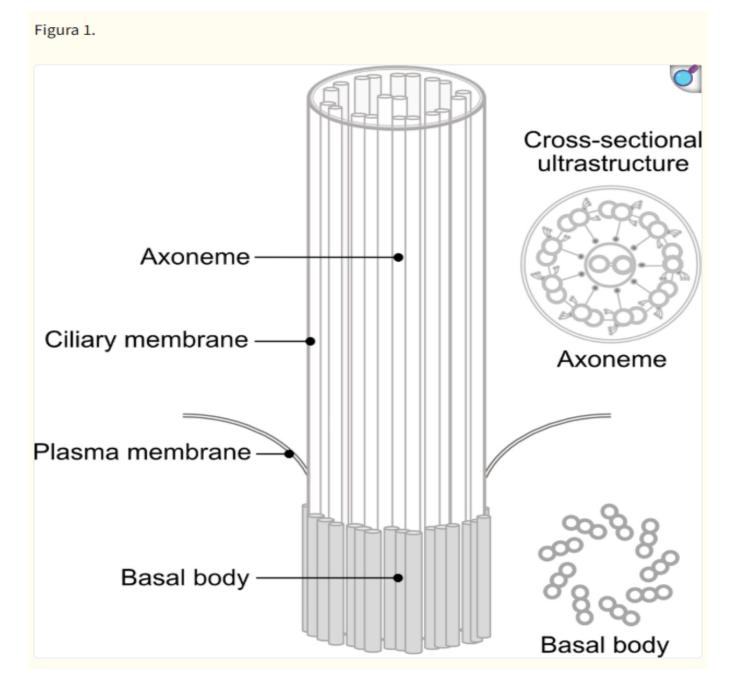
Discinesia ciliar primária

PEDRO CAMPOLINA NAHASS

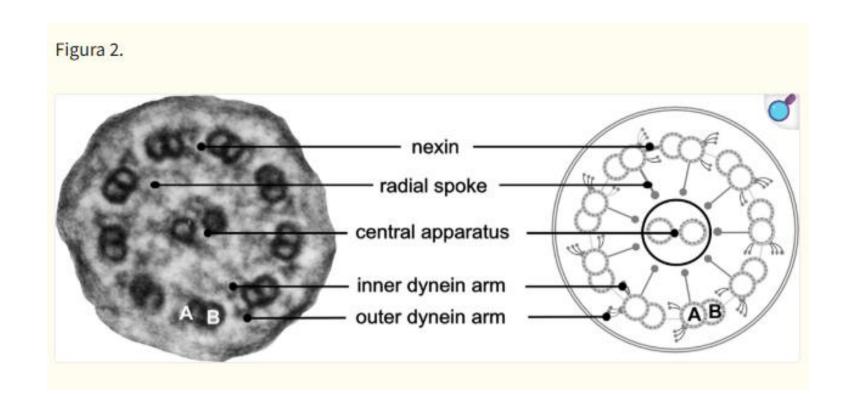

RESIDENTE DE PNEUMOLOGIA PEDIÁTRICA DO HIJPII

Introdução

- Doença autossômica recessiva
- ☐ Múltiplas mutações genéticas
 - Mais de 50 genes identificados
 - > Genes ainda não identificados
- ☐ Prevalência semelhante entre os sexos
 - > Variaram de 1:10.000 a 1:30.000 indivíduos
 - ✓ Valores subestimados

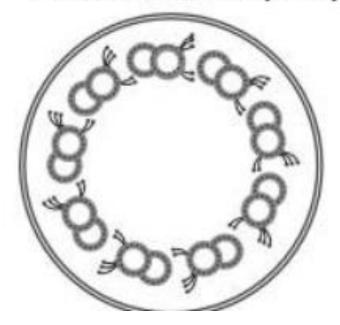
Caracterizada por comprometimento congênito da depuração mucociliar.

Estrutura Ciliar


Estrutura ciliar

Características dos Cílios Móveis

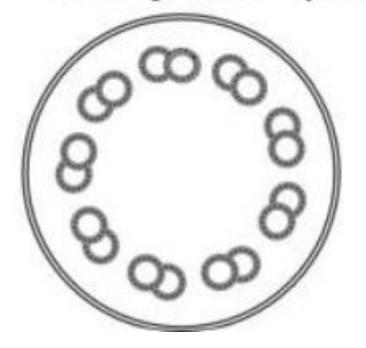
Made with > Napkin


Estrutura Ciliar -Cílios Móveis

Estrutura ciliar - Cílio móveis

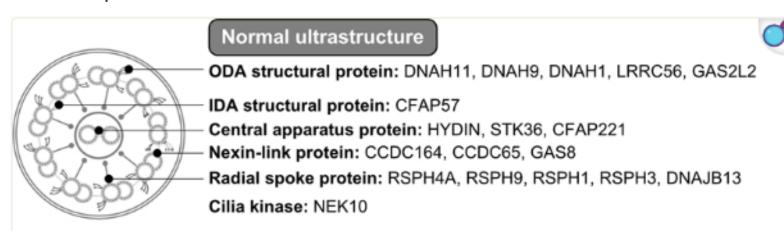
- Cílios nodais
 - > Expresso apenas durante o desenvolvimento fetal
 - Monocílio
 - ✓ Não tem par central (9+0)
 - ✓ Movimento rotatório
 - ☐ Fluxo para esquerda de fluido extracelular através do nó embrionário
 - Estabelece lateralidade esquerda-direita e lateralidade corporal

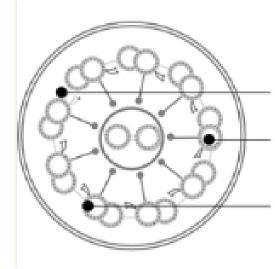
Nodal cilium (9+0)



Estrutura ciliar - Cílio imóveis

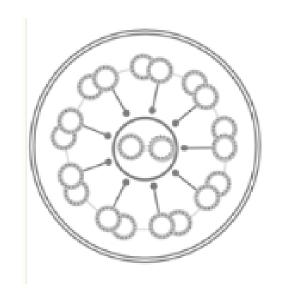
Função dos Cílios Primários




Primary cilium (9+0)

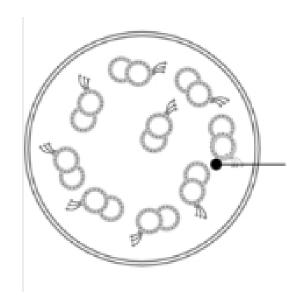
Made with > Napkin

- ☐ Geneticamente heterogênea
 - ➤ Grande número de proteínas envolvidas
 - > Frequentemente autossômica recessiva
 - Herança autossômica dominante e herança ligada ao X relatadas
- ☐ Mais de 50 genes descobertos
- ☐ Cerca de 30% dos portadores de DCP e dismotilidade ciliar tem estrutura ciliar normal

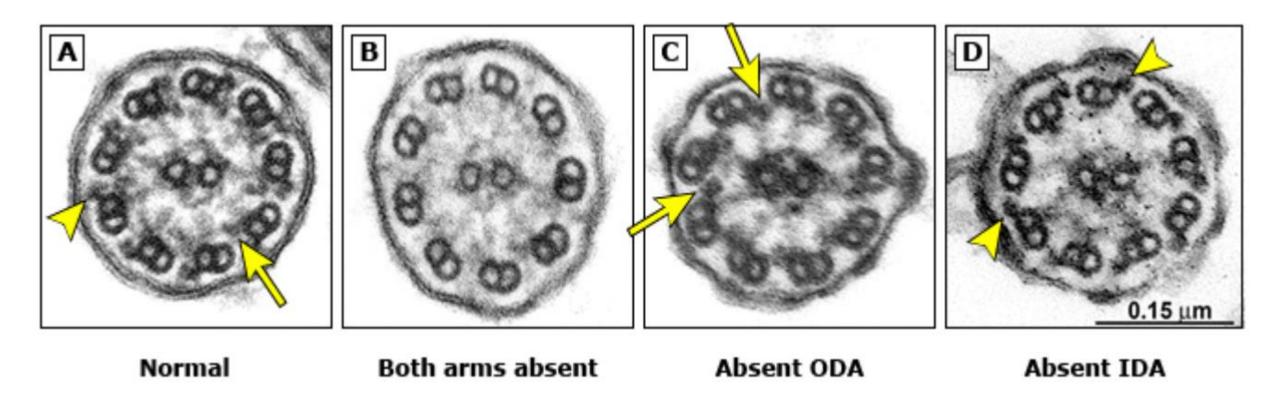


Outer dynein arm defect

ODA structural proteins: DNAH5, DNAI1, DNAI2, DNAL1, NME8


Docking protein: CCDC114, CCDC151, ARMC4, TTC25

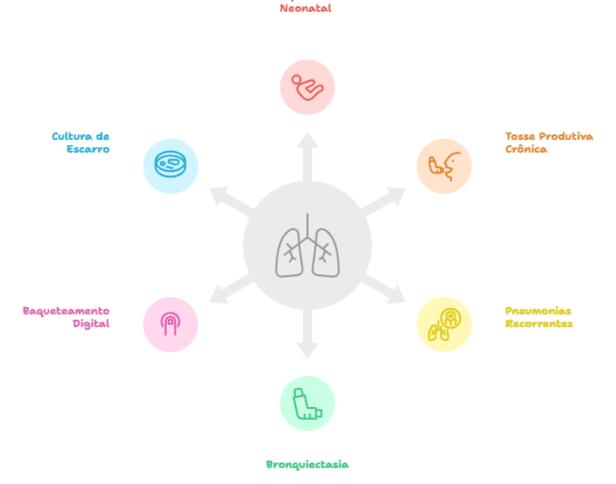
Attachment factor: CCDC103

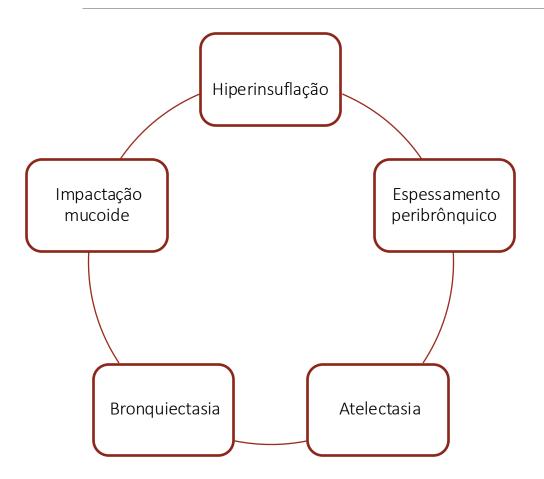

Outer and inner dynein arm defects

Cytoplasmic pre-assembly factors: DNAAF1, DNAAF2, DNAAF3, HEATR2 ZMYND10, DYX1C1, SPAG1, PIH1D3, CFAP300, CFAP298, LRRC6

Inner dynein arm defect and axonemal disorganization

Nexin-dynein regulatory complex: CCDC39, CCDC40




Características clínicas

Apresentação DCP

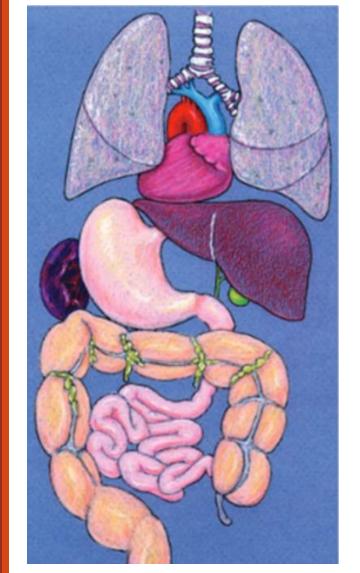
Característica	Descrição
& Respiratório	Desconforto respiratório neonatal
∠ Nasal	Rinite crônica
Auditivo	Efusões persistentes no ouvido médio e otite média recorrente
Tosse	Tosse produtiva diária desde a infância
Defeitos de lateralidade	Cerca da metade dos pacientes
Fenótipo clínico	Muitos sintomas comuns e inespecíficos

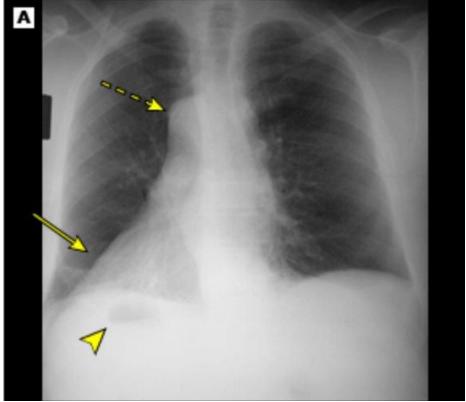
Manifestações Pulmonares Desconforto Respiratório

Nasossinusal e Ouvido médio

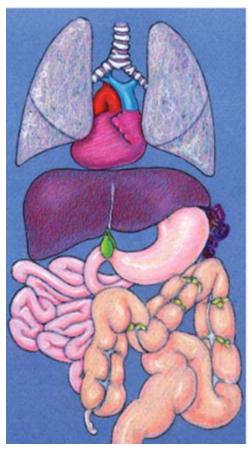
Coriza constante e não sazonal

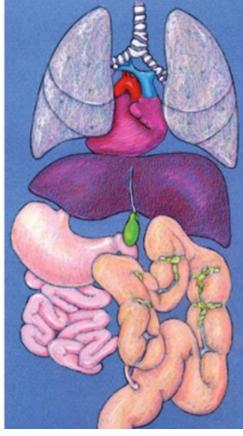
Congestão nasal persistente


Polipose nasal


Sinusite crônica

Otite média crônica com efusão


Otite média aguda recorrente

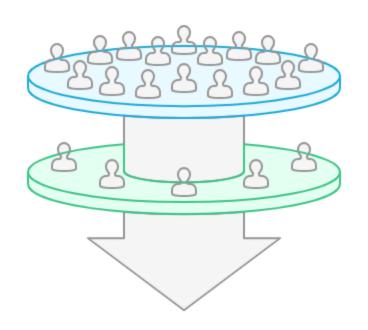

Perda auditiva Manifestações clínicas: Situs Inversus Totalis



Manifestações clínicas - Heterotaxia

- Órgãos internos não estão posicionados corretamente
- Piores resultados pulmonares e nutricionais
- Associado a cardiopatia congênita complexa

- ☐ Maioria dos homens apresenta infertilidade
 - ➤ Espermatozoides imóveis
- Mulheres apresentam fertilidade diminuída
 - > Atraso no trânsito do óvulo



Made with 🝃 Napkin

- ☐ Não existe padrão ouro
- ☐ Uso de critérios clínicos validados
 - ➤ Identifica paciente com maior probabilidade
- ☐ Testes especializados

O paciente tem tosse úmida diária que começou na infância?	Sim – Complete o PICADAR.	
	Não – Pare . PICADAR não foi desenvolvido para pacientes sem tosse com secreção.	
1. O paciente nasceu prematuro ou a termo?	Prazo	2
2. O paciente apresentou sintomas torácicos no período neonatal (por exemplo, taquipneia, tosse, pneumonia)?	Sim	2
3. O paciente foi internado em uma unidade neonatal?	Sim	2
4. O paciente tem alguma anormalidade de situs (situs inversus ou heterotaxia)?	Sim	4
5. O paciente tem algum defeito cardíaco congênito?	Sim	2
6. O paciente tem rinite perene persistente?	Sim	1
7. O paciente apresenta sintomas crônicos de ouvido ou audição (por exemplo, otite serosa, otite média serosa, perda auditiva, perfuração do ouvido)?	Sim	1
Pontuação total		

Óxido nítrico nasal

Medição de nNO

- Quantidade baixa ou ausente nos portadores de DCP
- ☐ Útil em pacientes com cinco ou mais anos de idade
- Mecanismo
 - ➤ Alteração na atividade da óxido nítrico sintetase
 - Aumento do consumo por ânions superóxido
 - Obstrução dos seios paranasais
 - Hipoplasia/agensia dos seios paranasais

Análise do movimento ciliar e ultraestrutura

2VS?

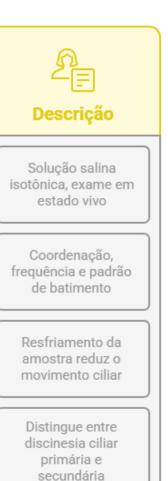
Videomicroscopia de alta velocidade

Triagem inicial para movimento ciliar

Microscopia eletrônica de transmissão

Análise ultraestrutural detalhada

- ☐ Análise do movimento ciliar e ultraestrutura
 - > Coleta da amostra em momento distante da infecção
 - Escovação nasal
 - ✓ Método preferido
 - ✓ Menos invasivo
 - ✓ Escovação da concha nasal inferior


Análise de Videomicroscopia de Alta Velocidade

Preparação da Amostra

Parâmetros de Avaliação

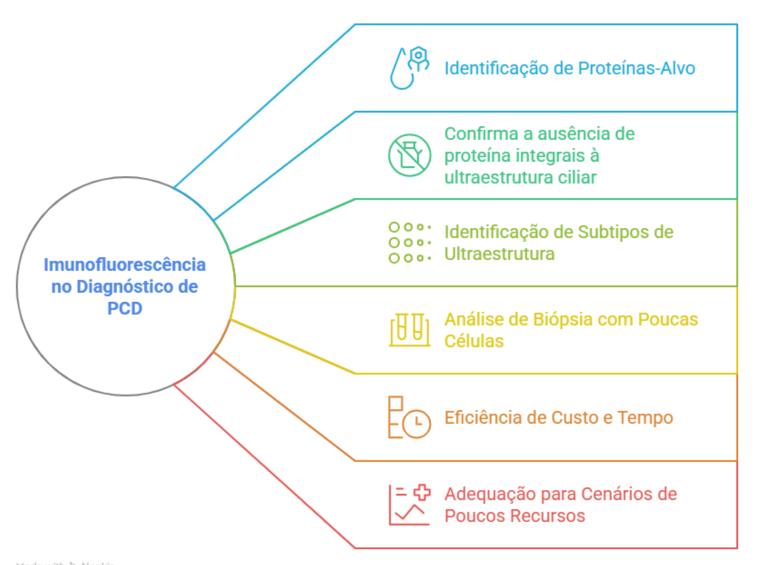
Aprimoramento da Técnica

Utilidade Clínica

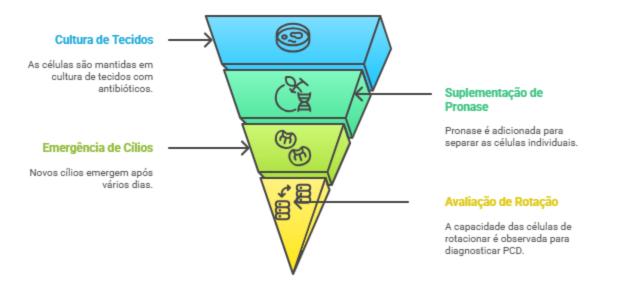
Limitações

Não há
padronização
na
interpretação
dos resultados

Amostras inadequadas e resultados inconclusivos


Equipamento caro

Pouco disponível na grande maioria dos centros


- ☐ Microscopia eletrônica de transmissão
 - Realizado quando o diagnóstico é incerto após teste genético ou HSVMA
 - ➤ Identifica o tipo de anormalidade ciliar
 - ➤ Pode ser normal em 30% dos pacientes
 - ✓ Não deve ser considerado um teste único

Defeitos de classe 1: defeitos de diagnóstico característicos	
Defeito de ODA	
Defeito de ODA e IDA	
Desorganização microtubular e defeito IDA	
Defeitos de classe 2: indicam um diagnóstico de PCD com outras evidências de apoio	
Defeito complexo central	
Deslocalização de corpos basais com poucos ou nenhum cílio	
Desorganização microtubular com IDA presente	
Ausência de ODA de 25 a 50% das seções transversais	
Ausência combinada de IDA e ODA de 25 a 50% das seções transversais	

Microscopia de Imunofluorescência

Processo de Cultura de Células para Diagnóstico de PCD

- ☐ Fenótipos raros
- > Desorientação ciliar
- > Aplasia ciliar
- > Agenesia microtubular central
- Defeitos no braço interno da dineína

Made with > Napkin

- ☐ Testes genéticos
 - ➤ Papel para o diagnóstico está evoluindo
 - ✓ Aumento da disponibilidade
 - > Aumento no número de genes analisados

Acompanhamento Clínico

- Consulta ambulatoriais de rotina
 - > 4 vezes/ano
 - > Realização de espirometria
- Cultura de microbiologia das vias aéreas
- ☐ Radiografia de tórax a cada 2 a 4 anos
- ☐ TC de tórax em momento oportuno
- Ecocardiograma e USG abdominal ao diagnóstico

Tratamento

Ausência de tratamento para correção ou restauração da função ciliar

Objetivos do Tratamento

Prognóstico

- ☐ Em geral tem um bom prognóstico
- ☐ Declínio da função pulmonar é mais lento
 - > Infecções recorrentes ou crônicas pode afetar o prognóstico
- Associação com gene especifico e/ou defeito ultraestrutural

Perspectivas futuras

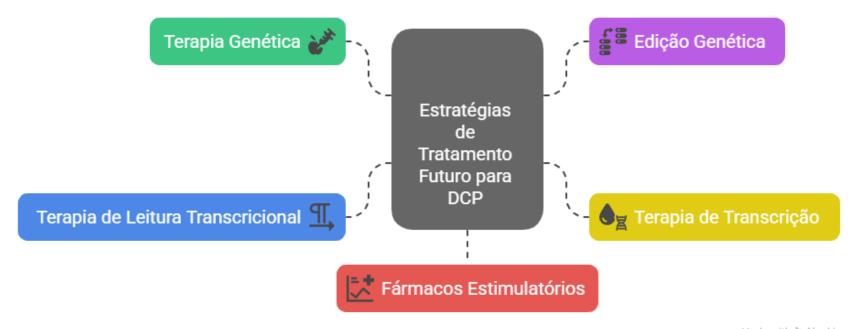
Review

Current and Future Treatments in Primary Ciliary Dyskinesia

Tamara Paff ¹, Heymut Omran ², Kim G. Nielsen ^{3,4} and Eric G. Haarman ^{1,*}

- Department of Paediatric Pulmonology, Emma Children's Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; t.paff@amsterdamumc.nl
- Department of General Pediatrics, University Childrens's Hospital Muenster, 48149 Muenster, Germany; heymut.omran@ukmuenster.de
- Danish PCD Centre, Danish Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Righospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; kim.g.nielsen@regionh.dk
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark
- * Correspondence: eg.haarman@amsterdamumc.nl

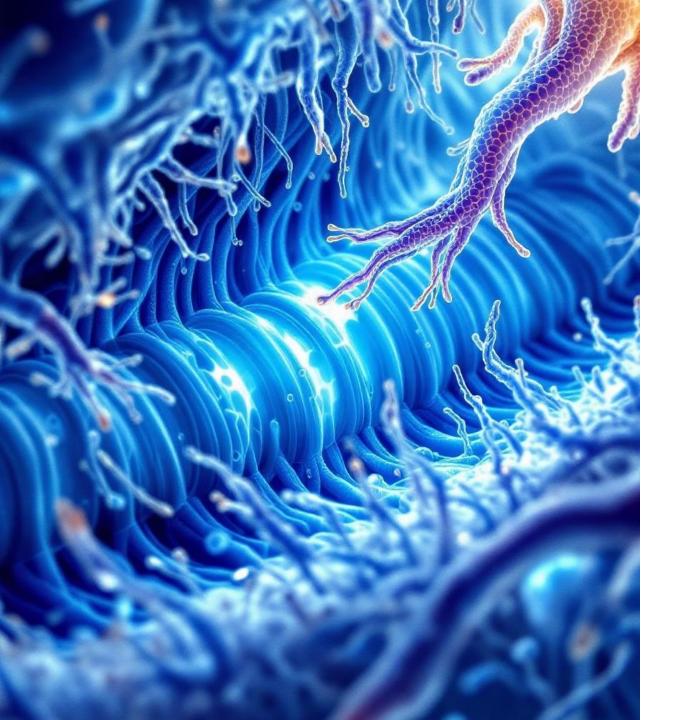
Inhaled delivery of a lipid nanoparticle encapsulated messenger RNA encoding a ciliary protein for the treatment of primary ciliary dyskinesia


Caroline J. Woo $^a \overset{\triangle}{\sim} \boxtimes$, Ayed Allawzi a , Nicholas Clark b , Neha Kaushal b , Tim Efthymiou b , Maike Thamsen a , Jane Nguyen a , Richard Wooster a , James C. Sullivan a c

- ^a Formerly Translate Bio, A Sanofi Company, 29 Hartwell Ave, Lexington, MA, 02421, USA
- ^b Translate Bio, A Sanofi Company, 200 West Street, Waltham, MA, 02451, USA
- ^c enGene, Inc., 7171 Rue Frederick Banting, Saint-Laurent, QC, H4S 1Z9, Canada

Received 14 January 2022, Revised 10 May 2022, Accepted 14 May 2022, Available online 22 May 2022, Version of Record 2 June 2022.

Perspectivas futuras


Estratégias de Tratamento Futuro para DCP

Made with > Napkin

Referências

- ✓ Lucas, J. S.; Paff, T.; Goggin, P.; Haarman, E. Diagnostic Methods in Primary Ciliary Dyskinesia. *Paediatric Respiratory Reviews*, v. 15, n. 4, p. 235-241, 2015. Disponível em: . Acesso em: 20 out. 2023.
- ✓ PAFF, Tamara; OMRAN, Heymut; NIELSEN, Kim G.; HAARMAN, Eric G. Current and Future Treatments in Primary Ciliary Dyskinesia. *International Journal of Molecular Sciences*, v. 22, n. 9834, 2021. Disponível em: . Acesso em: 11 set. 2021.
- ✓ Horani A, Ferkol TW. Understanding Primary Ciliary Dyskinesia and Other Ciliopathies. J Pediatr 2021; 230:15.
- ✓ KNOWLES, Michael R. et al. Primary Ciliary Dyskinesia: Recent Advances in Diagnostics, Genetics, and Characterization of Clinical Disease. *American Journal of Respiratory and Critical Care Medicine*, v. 188, n. 8, p. 913–922, 15 out. 2013. Disponível em: . Acesso em: 24 jun. 2013. DOI: 10.1164/rccm.201301-0059CI.
- ✓ DESPOTES, Katherine A.; ZARIWALA, Maimoona A.; DAVIS, Stephanie D.; FERKOL, Thomas W. Primary Ciliary Dyskinesia: A Clinical Review. **Cells**, Basel, v. 13, n. 11, art. 974, 2024. DOI: 10.3390/cells13110974.
- ✓ ROZOV, Tatiana. Síndrome da discinesia ciliar. In: AMARAL, José Luiz; RIBEIRO, José Davi; BARBOSA, Carla Galvão; RIBEIRO, Márcia. *Doenças pulmonares em pediatria: diagnóstico e tratamento*. 2. ed. Barueri, SP: Manole, 2021. cap. 58, p. 773–793.

OBRIGADO